Cone theta functions and spherical polytopes with rational volumes

نویسندگان

  • Amanda Folsom
  • Winfried Kohnen
  • Sinai Robins
چکیده

— We study a class of polyhedral functions called cone theta functions, which are closely related to classical theta functions. Each polyhedral cone K ⊂ Rd has an associated cone theta function, and we show that they encode information about the rationality of the spherical volume of K. We show that if K is a Weyl chamber for any finite Weyl group, then its cone theta function lies in a graded ring of classical theta functions and in this sense is “almost” modular. Conversely, in the case that the spherical volume is irrational, it is natural to ask whether the cone theta functions are themselves modular, and we prove that in general they are not. Résumé. — Nous étudions une classe de fonctions polyédriques appelées fonctions theta de cône, qui sont étroitement liées à des fonctions theta classiques. Chaque cône polyédrique K ⊂ Rd a une fonction theta de cône associée, et nous montrons qu’elles codent des informations sur la rationalité du volume sphérique de K. Nous montrons que si K est une chambre de Weyl pour tout groupe de Weyl fini, alors sa fonction theta de cône appartient à un anneau gradué de fonctions theta classiques et en ce sens est presque modulaire. Inversement, dans le cas où le volume sphérique est irrationnel, il est naturel de se demander si les fonctions theta de cône sont elles-mêmes modulaires, et nous prouvons qu’en général elles ne le sont pas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate Sums on Polyhedra Ii:bidegree and Poisson Formula

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...

متن کامل

ar X iv : 1 40 4 . 00 65 v 2 [ m at h . C O ] 3 N ov 2 01 4 INTERMEDIATE SUMS ON POLYHEDRA II : BIDEGREE AND POISSON FORMULA

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...

متن کامل

1 Residues formulae for volumes and Ehrhart polynomials of convex polytopes . Welleda Baldoni - Silva and Michèle Vergne January 2001

These notes on volumes and Ehrhart polynomials of convex polytopes are afterwards thoughts on lectures already delivered in Roma, by the second author in December 1999. The subject of these lectures was to explain Jeffrey-Kirwan residue formula for volumes of convex polytopes [J-K] and the residue formula for Ehrhart polynomials of rational polytopes [B-V 1, 2]. The main concept used in these f...

متن کامل

On Stanley’s Reciprocity Theorem for Rational Cones

We give a short, self-contained proof of Stanley’s reciprocity theorem for a rational cone K ⊂ R. Namely, let σK(x) = ∑ m∈K∩Zd x m. Then σK(x) and σK◦(x) are rational functions which satisfy the identity σK(1/x) = (−1) σK◦(x). A corollary of Stanley’s theorem is the Ehrhart-Macdonald reciprocity theorem for the lattice-point enumerator of rational polytopes. A distinguishing feature of our proo...

متن کامل

(formulas of Brion, Lawrence, and Varchenko on Rational Generating Functions for Cones)

We discuss and give elementary proofs of results of Brion and of Lawrence– Varchenko on the lattice-point enumerator generating functions for polytopes and cones. This largely expository note contains a new proof of Brion’s Formula using irrational decompositions, and a generalization of the Lawrence–Varchenko formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013